A Quantified Version of Bourgain's Sum-Product Estimate in Fp for Subsets of Incomparable Sizes
نویسنده
چکیده
Let Fp be the field of residue classes modulo a prime number p. In this paper we prove that if A,B ⊂ F∗p, then for any fixed ε > 0, |A + A| + |AB| (
منابع مشابه
The Sum-product Estimate for Large Subsets of Prime Fields
Let Fp be the field of prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ Fp with |A| = N such that max{|A+ A|, |AA|} p|A|. One of the results of the present paper implies that if A ⊂ Fp with |A| > p2/3, then max{|A+ A|, |AA|} p|A|.
متن کاملAn explicit sum-product estimate in Fp
Let Fp be the field of residue classes modulo a prime number p and let A be a non-empty subset of Fp. In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of max{|A+A|, |AA|}. In particular, our result implies that if 1 < |A| ≤ p7/13(log p)−4/13, then max{|A + A|, |AA|} ≫ |A|15/14 (log |A|)2/7 . 2000 Mathemati...
متن کاملBEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES
We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...
متن کامل2 Nets
Let A, B, be finite subsets of an abelian group, and let G ⊂ A × B be such that #A, #B, #{a + b : (a, b) ∈ G} ≤ N. We consider the question of estimating the quantity #{a − b : (a, b) ∈ G}. In [2] Bourgain obtained the bound of N 2− 1 13 , and applied this to the Kakeya conjecture. We improve Bourgain's estimate to N
متن کاملOn Product Sets in Fields of Prime Order and an Application of Burgess’ Inequality
This is the origin of paper ‘On a Question of Davenport and Lewis on Character Sums and Primitive Roots in Finite Fields’. There is still a little to be typed. Abstract Let A ⊂ Fp with |A| > p and |A + A| < C0|A|. We give explicit constants k = k(C0, ε) and κ = κ(C0, ε) such that |Ak| > κp. The tools we use are Garaev’s sum-product estimate, Freiman’s Theorem and a variant of Burgess’ method. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 15 شماره
صفحات -
تاریخ انتشار 2008